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THE PROBLEM OF THE DIFFRACTION OF INTERNAL WAVES 
AT THE EDGE OF A SEMI-INFINITE FIuvI* 

V.V. vARLAMov 

Inacontinuation oftheresearch described in /l-4/ on the diffraction of 
waves, described by the Klein-Gordon equation, the diffraction of external 
waves at the boundary of a semi-infinity film situated on the surface of 
a stratified liquid is considered. Among the many papers devoted to the 
scattering of acoustic waves by rectilinear objects we mention /5-7/. 
The need to take into account the properties of the surface covering the 
liquid led to a study of the boundary vaiue problem for the Helmholtz 
equation with boundary conditions containing higher-order derivatives 
than the equation itself. Consideration of the surface tension of a semi- 
infinite film leads to a similar situation. However, in this case the 
propagation of the waves is described by an equation of the hyperbolic 
and not the elliptic type. 

1. To study two-dimensional motions of an incompatible ideal liquid we will introduce 
a Cartesian system of coordinates (~,0,a). Consider an infinite plane layer Q=((z,z):-CO<S< 
Wr --h<z<O) of a stratified liquid, bounded from below (for I= --h) by a solid bottom. 
Above (where z=O) the boundary of the liquid consists of two parts; for s<O the surface 
of the liquid is free, and for z>O the liquid is covered by a thin film having a surface 
tension 0. The density of the liquid in the unperturbed state has the distribution pO(z)= 
poe-afiz, b > 0. 

The small oscillations of the liquid are described by the.following system of equations 
/8/: 

PO Wvlat + VP + s,p,g = 0 
a/a@, -I- (ez, v)p,' (2) = 0, div V = 0 v.1) 

where V = (u,, up) is the vector of the velocity of the liquid particles, P1 is the change in the 
density due to motions of the liquid, p is the dynamic pressure, e, is the unit vector of the 
02 axis, and g is the acceleration due to gravity. 

If we introduce the stream function Y using the formulas u~=Y,,Q= -Y, and then the 
function Y= Yye+, the integration of system (1.1) can be reduced to solving the equation 

a*/&" [A,u - tW + J&+ = 0 W) 

where A, is the Laplace operator with respect to z and z and o. a- Zgg is the square of the - 
Brent-Viaisial frequency+ 

For steady-state wave motion, which depends on time as rio', and o<o,, Eq.(1.2) can 
be written as the Klein-Gordon equation 

The condition for the solid bottom to be impenetrable and the boundary condition on the 
free surface /2/ have the form 

11 = 0, r--h. ZERO (1.4) 
Uz + BU + (g/o%,, = 0, I = 0, z < 0 (1.5) 
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The condition when z=O, r>O can be derived from the relations 

r=u*, p=p&gE--o-g&-, a5 
I = 0, r>o w 

and ~qs.(l.l) (c&r) is the vertical displacement of the film). Eliminating the function f 
from (1.6) we can write the following boundary condition for the stream function '4: 

FF @Y Fyr 
Po&atr=Pog --ST, r=O, 2>0 a.73 

Bearing the chosen time dependence in mind, we can rewrite the latter relation in terms 
of the function D: 

At the edge of the semi-infinite film the boundary-contact condition /5/ mustbe satisfied, 
corresponding to the fact that there is no concentrated force on it: at(+O)/&. Since it follows 
from the first relation of (1.6) that C(S)= (io)+x u~(z,O), this condition can be rewritten in 
the form 

Suppose that in the region r<O, --A<*<0 a wave ~cx=sin bN(rj-h)e’kNX propagates from 
infinity to the side of the semi-infinite film in a horizontal direction (one of the normal 
waves of the layer of liquid bounded above by the free surface and below by the solid bottom). 
here kN. b,>O are the components of the wave vector, where bN is one of the roots of the 
dispersion equation /3/ b otg bh = -p+ gd (ba + p*)/d and kNa = aa (b,.,% + pa) according to (1.3). It 
is required to investigate the wave motions excited by this wave in the liquid. 

If we represent the total wave field sr in the form ur= US. I+,,, the problem of determining 
the function u takes the following form: it is required to find everywhere the bounded 
function u which satisfies Eq.(1.3) in the region Q in the generalized sense, as well as the 
boundary conditions (1.4) and (1.5) and the conditions, which follow from (1.7) and (1.8), 

We will require that the function u and its first derivatives should be bounded at the 
origin of coordinates, while the higher-order derivatives at this point will have a singularity 
no higher than that indicated by the following: 

These conditions follow from the fact that the energy flow through an aribtrary closed 
surface surrounding the edge of the obstacle, is zero. 

We will formulate the radiation conditions in the form of a requirement such that the 
wave which arise as a result of diffraction carry away energy to infinity. 

2. The solution ofthe&oblem which satisfies all the requirements formulated above can 
be constructed by the Wiener-Hopf method /9/, and has the form 

The integration in (2.1) is carried out along the real axis of the plane aI circumventing 
the singular points of the integrand , where the negative singular points are circumvented from 
above and the positive ones from below. The branch of the function y (a)=(a*-cr'fi')"' is chosen 
as follows. We make a cut in the plane a connecting the points -4 and IZ~ through an 
infinitely removed point, andwhich goes vertically upwards in the upper half-plane and 
vertically downwards in the lower half-plane. We distinguish the branch of the function r(a) 
for which v(O)= -inb. 

When using the Wiener-Hopf method, the need arises to investigate the functions 

91 (a) = cos Zi - (BP + C)H-li-'sin H 

% (a) = ~9 B - {A UP + (pk)? + EIP + C]H-li-’ sin X 

i 
A = S(i -f-Q?.' 

k(wh)2@h *B= 

(2.2) 
(23) 



The function Q+(o;) appears on factorizing the function G(a) = % (at)&(a). and we hdve foi. 
it the estimate G+(a) = O(Iaj-l) when ~a/~w,Ima.~:O. 

It can be shown that the function (2.3) has a denumerable set of zeros +a, jn=l,Z,...~, 
for which when n+i, the following asymptotic formulas hold: 

e, = na(n - i)ih + 0 (I/n), 0 <a < ap (2.4) 

a, = n&h f 0 (i/n), a > ap (2.5) 
+a .= {[(k + i3h/V f 4k (Bh/Z -t I)]'." - (k +- ~h/z))/zk 
k = up (@h)V(zp& 

Note that when a>apr real roots &al, appear in the function (2.3) corresponding to a 
purely imaginary value of yp. In fact, putting vhfa=- iy and rewriting the equation &(a)= 0 
in the form 

y eEh y = A [ga - (@)*I* - Bya + C (Z& 
it can be shown that when O>dp it has a positive root yp< @h, to which there correspond 
the roots +a,, where a, = (~~)[(~~)~ - ypal“i. In addition, for any a>O, the function (2.3) has 
purely imaginary roots +Z, iE: L= -i(aih)fU2- ffib)~]“~ (P> fib is the root of Eg.12.6)), corresponding 
to the purely imaginary value 9. 

The func+ion (2.21, as shown in /3/, has a denumerable set of zeros fa,l (n =T 1, 2, . ” “1, 
defined by an asymptotic formula of the form (2.4), when O<U<%, and the form 12.5) when 

a > aa, where aS2= i-F 2/(@). It can be shown that a,> as for any /3,h, k>O. In addition, when 

a>a,r real roots fa0 appear in the function (2.2), corresponding to a purely imaginary 
value of yo. 

It follows from the above and Hadamard's theorem on the expansion of an integral function 
in factors, that the factorization of the function Q(a) has the form 

D (a, = Q, (a)sa_(a). R- (05) = a+(-+ 

n (o)/(f -!-si@, O<a<= 

%.(a) = n @)/l(f +=isJ (1 +a~)ltl a,<=<@, 
rr(a)(l-i-aj~)/f(13alapf(1~aiti)l. a>g 

where +a,,, -&cc,,’ are the roots of the function (2.2). 
We will represent the solution obtained in another form. We will split the region Q 

into two regions: Q1= ((z,I):z<O~ --h<a<O} and Q,={(z,z): x>O, --h<a<O). Applying Cauchy's 
theorem to integral (2.11, we obtain the following representation for the total wave field 
in the region Q1: 

The constant &is found from the boundary-contact condition (1.8). In view of the 

complexity of the corresponding expression it will not be given here. 
We similarly have in the region Q1 

u5: (z, z) = sin bN (z + h) exp (ik+) + (2.8) 

Expressions (2.7) and (2.8) can be written for the case ~>a,. When O<ci<crb we must 
omit the second term in Eq.{2.8), and when 

. ,O<a<rrp, in addition, we must omit the first 
term in Eq.(2.7). 

As an analysis of Eqs.(2.7) and (2.8) shows, the solution constructed is continuously 
differentiable in the regions Q, and Qt. The second derivatives of the function ur have a 
logarithmic singularity in the region of the edge of the semi-infinite film. This singularity 
"propagates" along the characteristics of the equation considered, and is "reflected" from 
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the boundaries of the liquid in accordance with the laws of geometrical optics. In fact, as 

was done in /3/, it can be shown that the second derivatives of us have a logarithmic 

singularity along the sections of the characteristics of Eq.(1.3), defined by the expressions 

z-(1== 2mh, z+ az= -2(m+ l)h, fn= '&I,... . The third derivatives of the solution have a 

singularity of the order of the inverse distance, while the fourth derivatives have a singular- 

ity of the order of the square of the inverse distance to the corresponding section of the 

characteristic. 
Note that when z=O, there is an improvement in the convergence of the series (2.7) and 

(2.8). As a result the function aauz/aza becomes bounded when z=O. In order to show this we 

will differentiate series (2.7) and (2.8) twice with respect to z and put z=O in the ex- 

pressions obtained. Bearing in mind that sin y,h/a = (--l)nO(iln) when ">51, according to (2.4) 

and (2.5) (a similar relation holds for siny,,*hla) we conclude that the series considered con- 

verge absolutely and uniformly with respect to z. It can similarly be shown that the function 

aSuz cz, ova9 at the points z, = 2mhla, m= O,+i,... has a logarithmic singularity, while the 

function a%b, (z, o)/azd has a singularity of the order of the inverse distance. 

The solution constructed satisfies Eq.(1.3) in the generalized sense. The boundary 
condition (1.5) and the boundary-contact condition (1.8) are satisfied in the classical sense, 

while boundary conditions (1.7) is satisfied in the generalized sense. 

3. We will discuss the results obtained. As can be seen from (2.7) the incident wave, 

having been scattered at the edge of the semi-infinite film, excites an infinite number of 

normal internal waves in the waveguide formed by the solid bottom and the semi-infinite film. 

These waves transfer energy in the positive direction of the OX axis without attenuation. 

Their amplitudes decrease as the wave number n increases as C,ln3 for ">I, while the wave- 

lengths are h, = 2nla,, where a,, are determined by the asymptotic form of (2.4) and (2.5). When 

a>apr in Eq.(2.7) we will have the first term, which describes a flexure wave of the film 

and a surface wave in the liquid under the film. The amplitude of this wave is a maximum on 

the surface and decreases exponentially in the direction of the bottom. The second term in 

(2.7) has a non-wave form, which decreases exponentially with respect to z and z with distance 

from the edge. 

In the region Q1 when O<a<a, there is an infinite number of reflected normal internal 

waves, whose energy propagates in the negative direction of the Or axis without attenuation 

(see (2.8)). The amplitudes of these waves decrease as the wave number increases as C,/n' 

for n>l, while the wavelengths are described in /3/. 

When a>a, the surface wave, represented by the second term in Eq.(2.8), also participates 

in the formation of the wave pattern. This wave appears for higher excitation frequencies 

than the flexure wave of the film. 

The author thanks A.G. Sveshnikov and S.A. Gabov for usefuldiscussions,and sincerely 

thanks V.V. Rumyantsev for his interest. 
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